• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Исследователи ВШЭ научили нейросети различать происхождение из генетически близких популяций

Исследователи ВШЭ научили нейросети различать происхождение из генетически близких популяций

© iStock

В Институте искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ предложили новый подход, основанный на современных методах машинного обучения, для определения генетического происхождения человека. Графовые нейросети позволяют с высокой точностью различать даже очень близкие популяции. 

Генетический анализ — услуга, ставшая популярной в последние 10–15 лет не только как инструмент медицинской диагностики, но и как возможность узнать больше о своем происхождении. Анализ ДНК позволяет оценить этнический состав, определить, где жили и куда переселялись предки, найти количество мутаций неандертальца в геноме. 

Это стало доступно благодаря развитию современных технологий — генотипирования, систем хранения и обработки данных, машинного обучения — и значительного снижения их стоимости. Но при этом существующие методы тестирования не позволяют разделить генетически близкие, родственные популяции, которые долгое время жили на смежных территориях.

Исследователи Института ИИ и цифровых наук НИУ ВШЭ разработали метод, позволяющий различать происхождение людей из близкородственных популяций. В основе технологии — графовые нейронные сети. Алгоритм опирается не на саму последовательность ДНК, а на графы, которые обозначают генетические связи между людьми с общими участками генома. Такие участки отражают степень родства между людьми и указывают на то, сколько поколений назад у них были общие предки. Чем больше совпадений, тем ближе люди по происхождению. Вершины в модели соответствуют человеку, а ребра отражают степень родства. 

Метод протестировали на данных из разных регионов. Особенно интересными оказались результаты по населению Восточно-Европейской равнины, по которым уже собрана большая база данных. Графовая нейросеть смогла точно определить популяционную принадлежность представителей генетически очень близких народов.  

Алексей Шмелев

«Существующие методы генетического анализа  решают иную задачу: они определяют принадлежность к крупным изолированным популяциям, например определяют, у кого в роду были французы, у кого немцы, у кого англичане. Наш метод позволяет работать с близкородственными популяциями, что особенно актуально для России, исторически многонациональной страны», — говорит Алексей Шмелев, один из авторов работы, стажер-исследователь Международной лаборатории статистической и вычислительной геномики Института ИИ и цифровых наук ФКН НИУ ВШЭ. 

В дальнейшем исследователи планируют научить нейросеть предсказывать процентное соотношение различных популяций в геноме. 

Исследователи зарегистрировали свою разработку под названием AncestryGNN — «Нейросетевое предсказание популяционной принадлежности по общим сегментам генома».

Владимир Щур

Как отметил заведующий Международной лабораторией статистической и вычислительной геномики Института ИИ и цифровых наук ФКН НИУ ВШЭ Владимир Щур, предложенный метод открывает новые перспективы для более точного определения популяционной истории людей и может применяться в генеалогических исследованиях и антропологии.

Работы выполнены по гранту Правительства Российской Федерации в рамках федерального проекта «Искусственный интеллект». 

Вам также может быть интересно:

«Будущее не предопределено — мы формируем его решениями сегодня»

Стратегический технологический проект «Национальный центр социально-экономического и научно-технологического прогнозирования» ВШЭ охватывает горизонты от 10 до 30 лет и включает работу над новыми методиками сценарного анализа. Он объединяет исследователей разных направлений и помогает выстраивать целостное видение будущего. Цель проекта — не только построить прогнозы, но и выработать практические рекомендации для государства и бизнеса. О том, зачем учиться ставить правильные вопросы о будущем, рассказала декан факультета мировой экономики и мировой политики ВШЭ Анастасия Лихачёва.

Стартовала регистрация школьников на Всероссийскую олимпиаду по ИИ

Открылась регистрация на пятый сезон Всероссийской олимпиады по искусственному интеллекту. В этом году организаторы ожидают увеличения числа участников — соревнование получило международный статус, и теперь принять участие могут школьники 8–11-х классов не только из России, но и из других стран. Олимпиаде присвоен II уровень в перечне РСОШ — ее призеры и победители получат льготы при поступлении в вуз.

В НИУ ВШЭ обсудили глобальные тренды ИИ на международной форсайт-сессии

В Высшей школе экономики прошла международная форсайт-сессия по искусственному интеллекту (ИИ). Российские и иностранные ученые обсудили тренды и вызовы, которые возникают в связи с быстрым развитием ИИ.

Больше не одинокий гений: как сохранить идентичность ученого в эпоху ИИ

Сегодня профессия ученого требует новых навыков, зачастую не связанных с наукой — от умения находить гранты до успешной продажи продукта своего труда. Огромным вызовом стал ИИ, который справляется со многими задачами быстрее человека. Центр научной интеграции НИУ ВШЭ организовал вебинар «Ученые и искусственный интеллект», посвященный профессиональной идентичности исследователя в условиях стремительной цифровизации и технологических трансформаций. Подробнее — в материале HSE Daily.

Географы НИУ ВШЭ рассчитали климатический риск-профиль Красноярского края

Команда Центра геоданных факультета географии и геоинформационных технологий НИУ ВШЭ детально оценила природные риски, которым подвергается Красноярский край из-за изменения климата. Обсуждение риск-профиля состоялось на прошедшем в Новосибирске XII Международном форуме технологического развития «Технопром-2025».

НИУ ВШЭ и Правительство Якутии подписали соглашение о сотрудничестве в области климатической адаптации

Соглашение о стратегическом сотрудничестве в научно-технологической и образовательной сферах подписали декан факультета географии и геоинформационных технологий НИУ ВШЭ Николай Куричев и Председатель Правительства Республики Саха (Якутия) Кирилл Бычков.

Эпоха ИИ: университеты и бигтехи обсудили трансформацию системы образования

В рамках круглого стола, организованного «Яндекс Образованием», эксперты из ведущих университетов и технологических компаний обсудили будущее системы образования и подготовки IT-специалистов в условиях развития технологий искусственного интеллекта. Высшую школу экономики представляла проректор университета Елена Одоевская.

Ученый в цифровую эпоху: как определить свой профессиональный путь в новом мире

Центр научной интеграции НИУ ВШЭ запускает программу «Современный ученый: инструменты развития научной карьеры», ориентированную на развитие профессиональных компетенций молодых исследователей. В течение 6 недель слушатели в синхронном онлайн-формате изучат 5 тематических блоков. Обучение начнется 22 сентября. На программу могут поступить все желающие, имеющие или получающие высшее или среднее специальное образование.

НИУ ВШЭ и Центр им. Дмитрия Рогачева подписали соглашение о научно-практическом сотрудничестве

Высшая школа экономики и Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии имени Дмитрия Рогачева подписали соглашение о научно-практическом сотрудничестве. Подписи под документом поставили ректор НИУ ВШЭ Никита Анисимов и генеральный директор центра Николай Грачев.

Вышка доверит ИИ рутинную работу по созданию программ ДПО

НИУ ВШЭ совместно с EdTech-компанией CDO Global запускает AI-конструкторы для оптимизации разработки курсов дополнительного профессионального образования (ДПО). Новый сервис позволит автоматизировать подготовку учебных материалов и оценочных средств, значительно сократив время и ресурсы, затрачиваемые преподавателями и методистами.